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ON A VARIATIONAL INEQUALITY FOR A SHALLOW SHELL 
WITH A CONSTRAINT ON THE BOUNDARY* 

A.M. KHLUDNEV 

A variational inequality that describes shell contact with 

OPERATOR 

a rigid stamp 
on the boundary is investigated. A non-negative measure characrerizing 
the action of the stamp on the shell is constructed on subsets of the 
boundary. The regularity of the solution is established. 

A number of results referring to the investigation of variational inequalities describing 
contact problems for elastic bodies under unilateral contiguity conditions has been obtained 
at this time. In particular, the contact problem for a three-dimensional elastic body 
(Signorini's problem) was considered in /I./. Its more general formulation for the case of a 
stamp whose surface does not agree with the elastic body boundary is proposed /2/ and then 
investigated /3/. Unilateral contact problems were considered for plates /4/ and shells /5/ 
with a constraint within the domain. 

Let us consider a boundary value problem for linear shallow shell equations with con- 
ditions on part of the boundary PO having the form 

Here M(uJ, T(u& are the bending moment and transverse force, U = (u,, I& u,, = tlini, Q, u11 ua 
are, respectively, the tangential and normal displacements of points of the shell, n=(n,,n*) 
is the external normal to the boundary, N,=Nijninl,Nij is the force in the middle surface, N, 
is the tangential component of the force vector on the boundary. Summation is over repeated 
subscripts ki. The boundary conditions formulated correspond to unilateral shell contact 
on the boundary with a rigid stamp and allow separation of the shell points from the stamp 
in both the =,~a plane and in a direction normal to the middle surface. The separation 
condition is ensured by the possibility of satisfying the strict inequalities u,>O or -V,>O. 
In this case T(u&=O, or respectively, N,,=O. If T(u,)>O or -N,>O, then, correspondingly, 
il* = 0 and cJ% = 0. 

We will introduce a number of notations and construct an exact formulation of the problem. 
Let PCRB be a bounded domain with the smooth boundary P represented in the form of the 
union of two parts: lY= r,U rl. For simplicity, we assume that PO and I'1 are arcs where the 
length of P1 is greater than zero. We let +,I@) denote the Sobolev space obtained by the 

closure of smooth functions equal to zero in the neighbourhood of I'* in Hz(Q). The space 
Hr,*(P) is defined similarly. Also let H(Q) = Hr:(Q) X Hr;‘XHpPW, 11 .lL be the norm in HS(Q). 

We consider the shell energy functional 

(3) 

Here F=(f,, fsr fd~L*(61) is the vector of the given forces, k,,, ktpE OC?!) are the curvatures, 
(J is Poisson's ratio, and z=(z~,z~)EP. The bilinear form B(., .) is defined below by /7/. 

Furthermore, we introduce the closed convex set in H(B) 

K={O=(U, %2EH(W/&z2=0* -U=O on r,} 

and we consider the problem of minimizing the energy functional II(e) in the set K. It is 
equivalent to solving the variational inequality 

0 E K: <D'(O), x- 0) > 0, vx> It 
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Here II'(e) is the gradient of the functional II at the point w. 
At can be shown that a solution of the problem exists. 
We obtain from inequality (4) that the following equations will be satisfied in the 

distribution sense in the domain P: 

A'u, + k,,N,, + k,,N,, = fs; -8lvijIazj = f, i = 1, 2 
N,, = ~1: + ssz2, N,, = 82, + 0~1, N,, = I/* (1 - u) e,, 

To prove this fact it is sufficient to substitute o-l-o0 as x into inequality (4), 
where oo~CO"(Q) is an arbitrary function. 

Furthermore, we write the formulas for the moment and transverse force 

aat+ 
M (~3) = oh+ (i- o)~Q- 

8 a aa,, 
T (4 =-an&- (1 --cs)T~~~T 

Here z = (-nn, n,) is a vector tangent to r. We also introduce a bilinear form that 
takes part in the representation of the energy functional Ii(e) 

(5) 

(6) 

The formal foundation (assuming sufficient regularity of the solution) of the fact that 
the boundary conditions (1) and (2) will be satisfied on r. can be obtained by using Green's 
formula for a biharmonic operator and the operator of the plane problem of elasticity theory. 

An exact mathematical meaning can be given to the boundary conditions (1) and (2). 
To do this it is necessary to use theorems about traces. It follows from the first equation 
in (5) that A’u,~I2(0). Moreover, from the fact that ug belongs to the space P(Q), we have 
~1~ E n+(r), auJan E 18~~ (r) on the boundary I?. According to /6/, for the elements of the space 
{WE P(Q) 1 A*WE P(Q)) it is possible to determine M(W)& H-'/I(f), T (W)E H-"# (I‘), where the general- 
ized Green's formula 

holds. 
Here N+(T) is the space that is topologically conjugate to the space N* (f), and the 

brackets (., *)s denote the duality between H-*(T) and Ha(r), The conditions on the boundary 
operators M,T necessary for the correctness of this result are confirmed in /7/. Thus the 
quantities u,T(u,) in (1) allows of accurate interpretation. 

It follows from (5) that aNij/dziez P(Q). As is shown in /S/, for the function 9 ==(q+,mzf 
satisfying the inclusions cp> divcp+s Lz(Q), pini= H-'/Z {r) can be defined on the boundary. Con- 
sequently, Nijnj E H-"*(I'). We hence obtain N,,E H-"*(f). Taking account of the inclusion U,E 
H'!' (I?), the product U,N, in (2) can also be given an exact meaning. 

Non-negative measures P,,pI characterising the stamp reaction on the shell are constructed 
below in subsets of the boundaries r,\ ar0. The measure p'a characterises the reaction of 
the stamp in the z1z8 plane in the normal direction to the boundary, and p, in an orthogonal 
direction to the shell middle surface. 

We introduce the space C,(r,) of finite functions continuous in r. with the following 
convergence. We assume that (PR*q if g,, converges uniformly to cp and the carriers of all 
'p,, belong to a fixed compacturn BCr,\aI'o. 

Theorem 1. The non-negative measures pl,p, for which the representation 

cn'(& x1 = s%+ f VndPzr vx = P', L's) EN(Q) I-l Co(f0) (3 
r* r. 

holds can be determined in the o-algebra of Bore1 subsets of the boundary r. \ are . 

Proof. We first note the following fact. LetXo = (0, 0, uII) E H(Q) and u3 > 0 on rO. Then 

(III (0)). X0) z 0 00) 

To prove this assertion it is sufficient to substitute the function 0+x0 as x into 
the inequality (4). Furthermore, let u. E Hf2(Q) n C,,(r,) and L ug* be the trace of this function 

on ro. A linear manifold of all such functions on I', will be denoted by V. We define the 
linear functional on V by the formula 

L (39 = <II' (e), X), 7. = (O,O, %) 

The functional L is defined uniquely by this formula. In fact, if ugl* = vIIP*, then 



according to (10) we have ~(v~~*)==L(u~~*). Furthermore, we select an arbitrary element V8.E 

c,* fro); cr3* (r,) of the space of finite functions on T o that have two continuous derivatives. 
The function us* can be continued to zero on the whole boundary r and then continued within 
the domain P such that it becomes a function of the class Hr,l(P). This means that the lineal 

V contains all. functions from co* (PO). In continuity the functional L is continued on C,.(r,). 
At the same time an arbitrary linear positive functional on ,C,(f,) is determinedbythemeasure 

For a function %Ex(a)n c,(re) of the form (O,O, v,) this denotes the validity of !&e 
representation 

Furthermore, we note that the second and third equations in (5) with the boundary 
conditions (2) are the analogue of the two-dimensional Signorini problem. The fact that the 
forces.Nij depend on the deflection u I) and the curvatures k 11,k8s is notessential.Consequently, 
the measure p'n can be constructed in the same way as in /3/. Therefore, for any function 
XEH(~) n C,(T,) of the form x= (~1, us, 0) the following equality holds: 

By virtue of the additivity of (11) and (12) we obtain the representation (9). 
The measures constructed take finite values in all the compacta BcI’,,\N’,. The 

properties of the measure p'e depend mainly on the regularity of the function U. In particular, 
available results on the smoothness of the solution of the Signorini problem enable us to 
prove absolute continuity of the measure p 1 relative to the Lebesgue measure on ro\al',. Namely, 
for an arbitrary point IE r,,\ar, there exists a neighbourhood Q, such that UE HP& 11 $1). 
The density of the measure ~2 turns out to be equal to-A&where Nn~E&(r,\ar,]. As regards 
the measure pX, its properties are then determined by the smoothness of the function us. 

Theorem 2. For an arbitrary point PE l',,'\ar, a neighbourhood Q, exist to such that 

u.7 E B'(Q,, n Q). 

Proof. We place the origin at the point z' by considering the direction of the z, axis 
to be the same as the direction of the external normal to the boundary r. For simplicity, 
we still assume that a section of the boundary, r,, near z" is rectilinear. We set 

d,h (3) = z-l [h (z $ ret) - h (x)1, At = -d_& 

Here r>O, and e1 is the unit direction of the I% axis. Let R, denote a circle of radius 
6 with centre at the point 2". Let ip E C~~(Raf,fp~ 1 on fib;,,0 < v < ?, and r< S/Z. Then the 
function s = tiIl + 'l,r%#*Al~l satisfies the inequality uar>/O on r,,. Indeed, by considering the 
parameter 6 to be sufficiently small, we have for ZE To 

USC (2) = (1 - 'p* (I))% (3) + '/a@ (2) (113 (3 -I- Tel) + I(3 (.t - Tel)) > 0 

This means that (+ I+, u~~)E K. We substitute (u,, %, usli as a test into inequality (4). 
We obtain 

B (u,, P&Q) - <fr - W’,, - k,,N,,, ‘p’Aps> 2 0 (13) 

The following chain is valid for which the difference between two successive terms is 
either zero or has a quantity as upper bound that is contained on the right-hand side of the 
inequality (14) obtained below: 

The second component in (13) is estimated more simply. It therefore follows from (13) 

ii % (tpur) llz'd c (1 fa IV + il =I IL* -t II =sV -i- It ~a ilo* + # 4 (mu3 1.1 urb#} (14) 

Here the constant c is independent of r. We hence obtain the boundedness of 1 dr (CPM) lb 
uniformly in r. This means that all three derivatives of usI with the exception of a~u$az,~, 
belong to Le(fi~,zn Q). We write the first equation in (5) in the form 

a%$&~~ = g (1% 

It follows from what was proved that g~Ii+ (Rblzn 0). At the same time, we have a%Jaz,*E 
H-'(Rb,s;fl 0) from the fact that U* belongs to the space H%(Q). Together with (15) this yields 
aau+g E ~2 (R~,~ rj Q), which indeed proves the theorem in this case. The following fact is used 
here. If % 'pri E H-'(Q), then FE L*(Q) (see /9/). If the section of r. near the point Z" is 
not rectilinear, then it is possible to make a change of variable with the unit Jacobian 
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y,= sl,y,= r,--a&). Here xg= cz(z,) is the equation of the boundary near the point x". The nature 
of the reasoning performed in this case is analoguous to that presented above. 
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INOPTIMIZATION PROBLEMS* 

A.P. SEIRANYAN 

The problem of maximizing the minimum eigenvalue of a selfadjoint matrix 
operator is considered. The case when the optimum eigenvalue is multiple, 
i.e. the problem of optimization is discontinuous, is investigated. This 
problem has interesting applications in the optimum design of constructions 
/l-6/. The necessary conditions for a local maximum of the eigenvalue of 
arbitrary multiplicity p with an ieoperimetric limit are obtained. The 
paper generalizes the results obtained in /7, 8/ for the single and double 
case. 

Consider the eigenvalue problem 

A Ihl t( = ;iB [hl tl (f) 

Here A [hl and B [hl are positive-definite symmetric m xm- matrices with coefficients 
"ij (h) and btj 04. which depends continuously on the components of the vector of the parameters 
h of dimensions n, LL is en eiqenvector of dimensions &and A is an eiqenvalue. 

Problem (1) has a complete system of eigenvectors ui (i= 1,2,...,m) and a sequence of 
eiqenvalues hi(i = 1,2,..r,m) corresponding to this system; we will assume that the orthoqonality 
condition is satisfied 

(B [h] ui, d) = 6ij (2) 

where &if is the Kronecker delta. Here and henceforth the parenthesis denote the scalar 
product of vectors. 

We will formulate the optimization problem as follows: it is required to obtain the vector 
of the parameters h=(h,,h,, . . . . h,) for which the minimum eiqenvalue h, of problem (1) reaches 
a maximum value under the conditions 
*Prikl.Matem.Mekhan.,51,2,349-352,1987 


